Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(2): pgae036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38328777

RESUMO

Mediating the terminal reaction of gluconeogenesis and glycogenolysis, the integral membrane protein glucose-6-phosphate catalytic subunit 1 (G6PC1) regulates hepatic glucose production by catalyzing hydrolysis of glucose-6-phosphate (G6P) within the lumen of the endoplasmic reticulum. Consistent with its vital contribution to glucose homeostasis, inactivating mutations in G6PC1 causes glycogen storage disease (GSD) type 1a characterized by hepatomegaly and severe hypoglycemia. Despite its physiological importance, the structural basis of G6P binding to G6PC1 and the molecular disruptions induced by missense mutations within the active site that give rise to GSD type 1a are unknown. In this study, we determine the atomic interactions governing G6P binding as well as explore the perturbations imposed by disease-linked missense variants by subjecting an AlphaFold2 G6PC1 structural model to molecular dynamics simulations and in silico predictions of thermodynamic stability validated with robust in vitro and in situ biochemical assays. We identify a collection of side chains, including conserved residues from the signature phosphatidic acid phosphatase motif, that contribute to a hydrogen bonding and van der Waals network stabilizing G6P in the active site. The introduction of GSD type 1a mutations modified the thermodynamic landscape, altered side chain packing and substrate-binding interactions, and induced trapping of catalytic intermediates. Our results, which corroborate the high quality of the AF2 model as a guide for experimental design and to interpret outcomes, not only confirm the active-site structural organization but also identify previously unobserved mechanistic contributions of catalytic and noncatalytic side chains.

2.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993754

RESUMO

Mediating the terminal reaction of gluconeogenesis and glycogenolysis, the integral membrane protein G6PC1 regulates hepatic glucose production by catalyzing hydrolysis of glucose-6-phosphate (G6P) within the lumen of the endoplasmic reticulum. Consistent with its vital contribution to glucose homeostasis, inactivating mutations in G6PC1 cause glycogen storage disease (GSD) type 1a characterized by hepatomegaly and severe hypoglycemia. Despite its physiological importance, the structural basis of G6P binding to G6PC1 and the molecular disruptions induced by missense mutations within the active site that give rise to GSD type 1a are unknown. Exploiting a computational model of G6PC1 derived from the groundbreaking structure prediction algorithm AlphaFold2 (AF2), we combine molecular dynamics (MD) simulations and computational predictions of thermodynamic stability with a robust in vitro screening platform to define the atomic interactions governing G6P binding as well as explore the energetic perturbations imposed by disease-linked variants. We identify a collection of side chains, including conserved residues from the signature phosphatidic acid phosphatase motif, that contribute to a hydrogen bonding and van der Waals network stabilizing G6P in the active site. Introduction of GSD type 1a mutations into the G6PC1 sequence elicits changes in G6P binding energy, thermostability and structural properties, suggesting multiple pathways of catalytic impairment. Our results, which corroborate the high quality of the AF2 model as a guide for experimental design and to interpret outcomes, not only confirm active site structural organization but also suggest novel mechanistic contributions of catalytic and non-catalytic side chains.

3.
Mol Genet Genomic Med ; 10(12): e2054, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36106513

RESUMO

BACKGROUND: A de novo, pathogenic, missense variant in UBTF, c.628G>A p.Glu210Lys, has been described as the cause of an emerging neurodegenerative disorder, Childhood-Onset Neurodegeneration with Brain Atrophy (CONDBA). The p.Glu210Lys alteration yields a positively charged stretch of three lysine residues. Functional studies confirmed this change results in a stronger interaction with negatively charged DNA and gain-of-function activity when compared to the wild-type sequence. The CONDBA phenotype reported in association with p.Glu210Lys consists of normal early-neurodevelopment followed by progressive motor, cognitive, and behavioral regression in early-to-middle childhood. METHODS AND RESULTS: The current proband presented at 9 months of age with baseline developmental delay and more extensive neuroradiological findings, including pontine hypoplasia, thalamic volume loss and signal abnormality, and hypomyelination. Like the recurrent CONDBA p.Glu210Lys variant, this novel variant, c.608A>G p.(Gln203Arg) lies within the highly conserved second HMG-box homology domain and involves the replacement of the wild-type residue with a positively charged residue, arginine. Computational structural modeling demonstrates that this amino acid substitution potentiates the interaction between UBTF and DNA, likely resulting in a gain-of-function effect for the UBTF protein, UBF. CONCLUSION: Here we present a new divergent phenotype associated with a novel, likely pathogenic, missense variant at a different position in the UBTF gene, c.608A>G p.(Gln203Arg).


Assuntos
Recidiva Local de Neoplasia , Doenças Neurodegenerativas , Criança , Humanos , Recidiva Local de Neoplasia/patologia , Fenótipo , Atrofia/genética , Atrofia/patologia , Doenças Neurodegenerativas/genética , DNA , Encéfalo/patologia
4.
HGG Adv ; 3(4): 100131, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36035247

RESUMO

Whole-exome sequencing (WES) in the clinic has identified several rare monogenic developmental and epileptic encephalopathies (DEE) caused by ion channel variants. However, WES often fails to provide actionable insight for rare diseases, such as DEEs, due to the challenges of interpreting variants of unknown significance (VUS). Here, we describe a "personalized structural biology" (PSB) approach that leverages recent innovations in the analysis of protein 3D structures to address this challenge. We illustrate this approach in an Undiagnosed Diseases Network (UDN) individual with DEE symptoms and a de novo VUS in KCNC2 (p.V469L), the Kv3.2 voltage-gated potassium channel. A nearby KCNC2 variant (p.V471L) was recently suggested to cause DEE-like phenotypes. Computational structural modeling suggests that both affect protein function. However, despite their proximity, the p.V469L variant is likely to sterically block the channel pore, while the p.V471L variant is likely to stabilize the open state. Biochemical and electrophysiological analyses demonstrate heterogeneous loss-of-function and gain-of-function effects, as well as differential response to 4-aminopyridine treatment. Molecular dynamics simulations illustrate that the pore of the p.V469L variant is more constricted, increasing the energetic barrier for K+ permeation, whereas the p.V471L variant stabilizes the open conformation. Our results implicate variants in KCNC2 as causative for DEE and guide the interpretation of a UDN individual. They further delineate the molecular basis for the heterogeneous clinical phenotypes resulting from two proximal pathogenic variants. This demonstrates how the PSB approach can provide an analytical framework for individualized hypothesis-driven interpretation of protein-coding VUS.

5.
Cancer Cell ; 39(8): 1099-1114.e8, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34171264

RESUMO

Activating mutations in HER2 (ERBB2) drive the growth of a subset of breast and other cancers and tend to co-occur with HER3 (ERBB3) missense mutations. The HER2 tyrosine kinase inhibitor neratinib has shown clinical activity against HER2-mutant tumors. To characterize the role of HER3 mutations in HER2-mutant tumors, we integrate computational structural modeling with biochemical and cell biological analyses. Computational modeling predicts that the frequent HER3E928G kinase domain mutation enhances the affinity of HER2/HER3 and reduces binding of HER2 to its inhibitor neratinib. Co-expression of mutant HER2/HER3 enhances HER2/HER3 co-immunoprecipitation and ligand-independent activation of HER2/HER3 and PI3K/AKT, resulting in enhanced growth, invasiveness, and resistance to HER2-targeted therapies, which can be reversed by combined treatment with PI3Kα inhibitors. Our results provide a mechanistic rationale for the evolutionary selection of co-occurring HER2/HER3 mutations and the recent clinical observations that HER3 mutations are associated with a poor response to neratinib in HER2-mutant cancers.


Assuntos
Neoplasias da Mama/genética , Mutação com Ganho de Função , Quinolinas/farmacologia , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Aminopiridinas/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Camundongos Nus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Morfolinas/administração & dosagem , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Multimerização Proteica , Quinolinas/administração & dosagem , Quinolinas/química , Quinolinas/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Receptor ErbB-3/química , Receptor ErbB-3/metabolismo , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Neurology ; 97(2): e145-e155, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33947782

RESUMO

OBJECTIVE: To determine the molecular basis of a new monogenetic recessive disorder that results in familial autonomic ganglionopathy with diffuse autonomic failure. METHODS: Two adult siblings from one family (I-4 and I-5) and another participant from a second family (II-3) presented with severe neurogenic orthostatic hypotension (nOH), small nonreactive pupils, and constipation. All 3 affected members had low norepinephrine levels and diffuse panautonomic failure. RESULTS: Whole exome sequencing of DNA from I-4 and I-5 showed compound heterozygosity for c.907_908delCT (p.L303Dfs*115)/c.688 G>A (p.D230N) pathologic variants in the acetylcholine receptor, neuronal nicotinic, α3 subunit gene (CHRNA3). II-3 from the second family was homozygous for the same frameshift (fs) variant (p.L303Dfs*115//p.L303Dfs*115). CHRNA3 encodes a critical subunit of the nicotinic acetylcholine receptors (nAChRs) responsible for fast synaptic transmission in the autonomic ganglia. The fs variant is clearly pathogenic and the p.D230N variant is predicted to be damaging (SIFT)/probably damaging (PolyPhen2). The p.D230N variant lies on the interface between CHRNA3 and other nAChR subunits based on structural modeling and is predicted to destabilize the nAChR pentameric complex. CONCLUSIONS: We report a novel genetic disease that affected 3 individuals from 2 unrelated families who presented with severe nOH, miosis, and constipation. These patients had rare pathologic variants in the CHRNA3 gene that cosegregate with and are predicted to be the likely cause of their diffuse panautonomic failure.


Assuntos
Doenças do Sistema Nervoso Autônomo/genética , Mutação , Receptores Nicotínicos/genética , Adolescente , Adulto , Constipação Intestinal/genética , Feminino , Genes Recessivos , Humanos , Hipotensão Ortostática/genética , Masculino , Miose/genética , Linhagem , Sequenciamento do Exoma
7.
Biochemistry ; 60(11): 825-846, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705117

RESUMO

Structure-based antibody and antigen design has advanced greatly in recent years, due not only to the increasing availability of experimentally determined structures but also to improved computational methods for both prediction and design. Constant improvements in performance within the Rosetta software suite for biomolecular modeling have given rise to a greater breadth of structure prediction, including docking and design application cases for antibody and antigen modeling. Here, we present an overview of current protocols for antibody and antigen modeling using Rosetta and exemplify those by detailed tutorials originally developed for a Rosetta workshop at Vanderbilt University. These tutorials cover antibody structure prediction, docking, and design and antigen design strategies, including the addition of glycans in Rosetta. We expect that these materials will allow novice users to apply Rosetta in their own projects for modeling antibodies and antigens.


Assuntos
Anticorpos/imunologia , Antígenos/imunologia , Modelos Biológicos , Polissacarídeos/imunologia
8.
J Endocr Soc ; 4(8): bvaa084, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32803091

RESUMO

CONTEXT: Hypophosphatasia (HPP) is a syndrome marked by low serum alkaline phosphatase (AlkP) activity as well as musculoskeletal and/or dental disease. While the majority of subjects with HPP carry a pathogenic variant in the ALPL gene or its regulatory regions, individual pathogenic variants are often not tightly correlated with clinical symptomatology. We sought to better understand the genotype/phenotype correlation in HPP by examining the clinical and biochemical data of 37 subjects with 2 rare variants in ALPL. METHODS: Through BioVU, a DNA biobank that pairs individuals' genetic information with their de-identified medical records, we identified subjects with 2 rare variants with distinct reported clinical phenotypes (p.D294A and p.T273M). We then performed a manual review of these subjects' de-identified medical records along with computational modeling of protein structure to construct a genetic, biochemical and clinical phenotype for each subject and variant. RESULTS: Twenty subjects with the p.D294A variant and 17 with the p.T273M variant had sufficient data for analysis. Among subjects in our cohort with the p.D294A variant, 6 (30.0%) had both clinical bone disease and serum AlkP activity below 40 IU/L while 4 subjects (23.5%) with the p.T273M variant met the same criteria despite the distinct clinical phenotypes of these variants. CONCLUSIONS: Given the loose genotype/phenotype correlation in HPP seen in our cohort, clinical context is crucial for the interpretation of genetic test results to guide clinical care in this population. Otherwise, over- or under-diagnosis may occur, resulting in misidentification of those who may benefit from additional screening and perhaps pharmacologic intervention.

9.
Protein Sci ; 29(6): 1535-1549, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32285480

RESUMO

Genetic variation in the membrane trafficking adapter protein complex 4 (AP-4) can result in pathogenic neurological phenotypes including microencephaly, spastic paraplegias, epilepsy, and other developmental defects. We lack molecular mechanisms responsible for impaired AP-4 function arising from genetic variation, because AP-4 remains poorly understood structurally. Here, we analyze patterns of AP-4 genetic evolution and conservation to identify regions that are likely important for function and thus more susceptible to pathogenic variation. We map known variants onto an AP-4 homology model and predict the likelihood of pathogenic variation at a given location on the structure of AP-4. We find significant clustering of likely pathogenic variants located at the interface between the ß4 and N-µ4 subunits, as well as throughout the C-µ4 subunit. Our work offers an integrated perspective on how genetic and evolutionary forces affect AP-4 structure and function. As more individuals with uncharacterized AP-4 variants are identified, our work provides a foundation upon which their functional effects and disease relevance can be interpreted.


Assuntos
Complexo 4 de Proteínas Adaptadoras/química , Complexo 4 de Proteínas Adaptadoras/genética , Complexo 4 de Proteínas Adaptadoras/metabolismo , Evolução Molecular , Variação Genética/genética , Humanos , Modelos Moleculares , Conformação Proteica , Homologia de Sequência de Aminoácidos
10.
J Biol Chem ; 295(17): 5614-5625, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156702

RESUMO

In Staphylococcus aureus-caused endocarditis, the pathogen secretes staphylocoagulase (SC), thereby activating human prothrombin (ProT) and evading immune clearance. A previous structural comparison of the SC(1-325) fragment bound to thrombin and its inactive precursor prethrombin 2 has indicated that SC activates ProT by inserting its N-terminal dipeptide Ile1-Val2 into the ProT Ile16 pocket, forming a salt bridge with ProT's Asp194, thereby stabilizing the active conformation. We hypothesized that these N-terminal SC residues modulate ProT binding and activation. Here, we generated labeled SC(1-246) as a probe for competitively defining the affinities of N-terminal SC(1-246) variants preselected by modeling. Using ProT(R155Q,R271Q,R284Q) (ProTQQQ), a variant refractory to prothrombinase- or thrombin-mediated cleavage, we observed variant affinities between ∼1 and 650 nm and activation potencies ranging from 1.8-fold that of WT SC(1-246) to complete loss of function. Substrate binding to ProTQQQ caused allosteric tightening of the affinity of most SC(1-246) variants, consistent with zymogen activation through occupation of the specificity pocket. Conservative changes at positions 1 and 2 were well-tolerated, with Val1-Val2, Ile1-Ala2, and Leu1-Val2 variants exhibiting ProTQQQ affinity and activation potency comparable with WT SC(1-246). Weaker binding variants typically had reduced activation rates, although at near-saturating ProTQQQ levels, several variants exhibited limiting rates similar to or higher than that of WT SC(1-246). The Ile16 pocket in ProTQQQ appears to favor nonpolar, nonaromatic residues at SC positions 1 and 2. Our results suggest that SC variants other than WT Ile1-Val2-Thr3 might emerge with similar ProT-activating efficiency.


Assuntos
Proteínas de Bactérias/metabolismo , Coagulase/metabolismo , Protrombina/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Coagulase/química , Humanos , Modelos Moleculares , Ligação Proteica , Protrombina/química , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Especificidade por Substrato
11.
Mol Genet Genomic Med ; 7(6): e686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30993913

RESUMO

BACKGROUND: Family screening of a 48-year-old male with recently diagnosed IgG4-related disease (IgG4-RD) revealed unanticipated elevations in plasma IgG4 in his two healthy teenaged sons. METHODS: We performed gene sequencing, immune cell studies, HLA typing, and analyses of circulating cytotoxic CD4+ T lymphocytes and plasmablasts to seek clues to pathogenesis. DNA from a separate cohort of 99 patients with known IgG4-RD was also sequenced for the presence of genetic variants in a specific gene, FGFBP2. RESULTS: The three share a previously unreported heterozygous single base deletion in fibroblast growth factor binding protein type 2 (FGFBP2), which causes a frameshift in the coding sequence. The FGFBP2 protein is secreted by cytotoxic T-lymphocytes and binds fibroblast growth factor. The variant sequence in the FGFBP2 protein is predicted to form a disordered random coil rather than a helical-turn-helix structure, unable to adopt a stable conformation. The proband and the two sons had 5-10-fold higher numbers of circulating cytotoxic CD4 + T cells and plasmablasts compared to matched controls. The three members also share a homozygous missense common variant in FGFBP2 found in heterozygous form in ~40% of the population. This common variant was found in 73% of an independent, well characterized IgG4-RD cohort, showing enrichment in idiopathic IgG4-RD. CONCLUSIONS: The presence of a shared deleterious variant and homozygous common variant in FGFBP2 in the proband and sons strongly implicates this cytotoxic T cell product in the pathophysiology of IgG4-RD. The high prevalence of a common FGFBP2 variant in sporadic IgG4-RD supports the likelihood of participation in disease.


Assuntos
Doença Relacionada a Imunoglobulina G4/genética , Imunoglobulina G/genética , Adolescente , Linfócitos T CD4-Positivos/metabolismo , Variação Genética/genética , Humanos , Imunoglobulina G/metabolismo , Masculino , Pessoa de Meia-Idade , Linfócitos T Citotóxicos/fisiologia
14.
Curr Opin HIV AIDS ; 13(4): 359-365, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29782334

RESUMO

PURPOSE OF REVIEW: To summarize recent advances in the discovery of chemical inhibitors targeting the HIV capsid and research on their mechanisms of action. RECENT FINDINGS: HIV infection is critically dependent on functions of the viral capsid. Numerous studies have reported the identification of a variety of compounds that bind to the capsid protein; some of these inhibit reverse transcription and nuclear entry, steps required for infection. Other capsid-targeting compounds appear to act by perturbing capsid assembly, resulting in noninfectious progeny virions. Inhibitors may bind to several different positions on the capsid protein, including sites in both protein domains. However, the antiviral activity of many reported capsid-targeting inhibitors has not been definitively linked to capsid binding. Until recently, the low-to-moderate potency of reported capsid-targeting inhibitors has precluded their further clinical development. In 2017, GS-CA1, a highly potent capsid inhibitor, was described that holds promise for clinical development. SUMMARY: Small molecules that bind to the viral capsid protein can be potent inhibitors of HIV infection. Capsid-targeting drugs are predicted to exhibit high barriers to viral resistance, and ongoing work in this area is contributing to an understanding of the molecular biology of HIV uncoating and maturation.


Assuntos
Antivirais/administração & dosagem , Capsídeo/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos
15.
BMC Bioinformatics ; 19(1): 18, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29361909

RESUMO

BACKGROUND: Next-generation sequencing of individuals with genetic diseases often detects candidate rare variants in numerous genes, but determining which are causal remains challenging. We hypothesized that the spatial distribution of missense variants in protein structures contains information about function and pathogenicity that can help prioritize variants of unknown significance (VUS) and elucidate the structural mechanisms leading to disease. RESULTS: To illustrate this approach in a clinical application, we analyzed 13 candidate missense variants in regulator of telomere elongation helicase 1 (RTEL1) identified in patients with Familial Interstitial Pneumonia (FIP). We curated pathogenic and neutral RTEL1 variants from the literature and public databases. We then used homology modeling to construct a 3D structural model of RTEL1 and mapped known variants into this structure. We next developed a pathogenicity prediction algorithm based on proximity to known disease causing and neutral variants and evaluated its performance with leave-one-out cross-validation. We further validated our predictions with segregation analyses, telomere lengths, and mutagenesis data from the homologous XPD protein. Our algorithm for classifying RTEL1 VUS based on spatial proximity to pathogenic and neutral variation accurately distinguished 7 known pathogenic from 29 neutral variants (ROC AUC = 0.85) in the N-terminal domains of RTEL1. Pathogenic proximity scores were also significantly correlated with effects on ATPase activity (Pearson r = -0.65, p = 0.0004) in XPD, a related helicase. Applying the algorithm to 13 VUS identified from sequencing of RTEL1 from patients predicted five out of six disease-segregating VUS to be pathogenic. We provide structural hypotheses regarding how these mutations may disrupt RTEL1 ATPase and helicase function. CONCLUSIONS: Spatial analysis of missense variation accurately classified candidate VUS in RTEL1 and suggests how such variants cause disease. Incorporating spatial proximity analyses into other pathogenicity prediction tools may improve accuracy for other genes and genetic diseases.


Assuntos
Algoritmos , DNA Helicases/genética , Doenças Pulmonares Intersticiais/patologia , Análise Espacial , Área Sob a Curva , DNA Helicases/química , DNA Helicases/metabolismo , Humanos , Doenças Pulmonares Intersticiais/genética , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Curva ROC
16.
Clin Cancer Res ; 24(6): 1426-1435, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29284706

RESUMO

Purpose: We describe herein a novel P447_L455 deletion in the C2 domain of PIK3CA in a patient with an ER+ breast cancer with an excellent response to the PI3Kα inhibitor alpelisib. Although PIK3CA deletions are relatively rare, a significant portion of deletions cluster within amino acids 446-460 of the C2 domain, suggesting these residues are critical for p110α function.Experimental Design: A computational structural model of PIK3CAdelP447-L455 in complex with the p85 regulatory subunit and MCF10A cells expressing PIK3CAdelP447-L455 and PIK3CAH450_P458del were used to understand the phenotype of C2 domain deletions.Results: Computational modeling revealed specific favorable inter-residue contacts that would be lost as a result of the deletion, predicting a significant decrease in binding energy. Coimmunoprecipitation experiments showed reduced binding of the C2 deletion mutants with p85 compared with wild-type p110α. The MCF10A cells expressing PIK3CA C2 deletions exhibited growth factor-independent growth, an invasive phenotype, and higher phosphorylation of AKT, ERK, and S6 compared with parental MCF10A cells. All these changes were ablated by alpelisib treatment.Conclusions: C2 domain deletions in PIK3CA generate PI3K dependence and should be considered biomarkers of sensitivity to PI3K inhibitors. Clin Cancer Res; 24(6); 1426-35. ©2017 AACR.

17.
Mol Pharmacol ; 92(3): 338-346, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28619748

RESUMO

VU590 was the first publicly disclosed, submicromolar-affinity (IC50 = 0.2 µM), small-molecule inhibitor of the inward rectifier potassium (Kir) channel and diuretic target, Kir1.1. VU590 also inhibits Kir7.1 (IC50 ∼ 8 µM), and has been used to reveal new roles for Kir7.1 in regulation of myometrial contractility and melanocortin signaling. Here, we employed molecular modeling, mutagenesis, and patch clamp electrophysiology to elucidate the molecular mechanisms underlying VU590 inhibition of Kir1.1 and Kir7.1. Block of both channels is voltage- and K+-dependent, suggesting the VU590 binding site is located within the pore. Mutagenesis analysis in Kir1.1 revealed that asparagine 171 (N171) is the only pore-lining residue required for high-affinity block, and that substituting negatively charged residues (N171D, N171E) at this position dramatically weakens block. In contrast, substituting a negatively charged residue at the equivalent position in Kir7.1 enhances block by VU590, suggesting the VU590 binding mode is different. Interestingly, mutations of threonine 153 (T153) in Kir7.1 that reduce constrained polarity at this site (T153C, T153V, T153S) make wild-type and binding-site mutants (E149Q, A150S) more sensitive to block by VU590. The Kir7.1-T153C mutation enhances block by the structurally unrelated inhibitor VU714 but not by a higher-affinity analog ML418, suggesting that the polar side chain of T153 creates a barrier to low-affinity ligands that interact with E149 and A150. Reverse mutations in Kir1.1 suggest that this mechanism is conserved in other Kir channels. This study reveals a previously unappreciated role of membrane pore polarity in determination of Kir channel inhibitor pharmacology.


Assuntos
Compostos Heterocíclicos com 1 Anel/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Células HEK293 , Humanos , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/química , Relação Estrutura-Atividade
18.
Cancer Discov ; 7(6): 575-585, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28274957

RESUMO

We report a HER2T798I gatekeeper mutation in a patient with HER2L869R-mutant breast cancer with acquired resistance to neratinib. Laboratory studies suggested that HER2L869R is a neratinib-sensitive, gain-of-function mutation that upon dimerization with mutant HER3E928G, also present in the breast cancer, amplifies HER2 signaling. The patient was treated with neratinib and exhibited a sustained partial response. Upon clinical progression, HER2T798I was detected in plasma tumor cell-free DNA. Structural modeling of this acquired mutation suggested that the increased bulk of isoleucine in HER2T798I reduces neratinib binding. Neratinib blocked HER2-mediated signaling and growth in cells expressing HER2L869R but not HER2L869R/T798I In contrast, afatinib and the osimertinib metabolite AZ5104 strongly suppressed HER2L869R/T798I-induced signaling and cell growth. Acquisition of HER2T798I upon development of resistance to neratinib in a breast cancer with an initial activating HER2 mutation suggests HER2L869R is a driver mutation. HER2T798I-mediated neratinib resistance may be overcome by other irreversible HER2 inhibitors like afatinib.Significance: We found an acquired HER2 gatekeeper mutation in a patient with HER2-mutant breast cancer upon clinical progression on neratinib. We speculate that HER2T798I may arise as a secondary mutation following response to effective HER2 tyrosine kinase inhibitors (TKI) in other cancers with HER2-activating mutations. This resistance may be overcome by other irreversible HER2 TKIs, such as afatinib. Cancer Discov; 7(6); 575-85. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 539.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas/uso terapêutico , Receptor ErbB-2/genética , Afatinib , Linhagem Celular Tumoral , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Fenótipo , Quinazolinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores
19.
Biochemistry ; 55(34): 4748-63, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27490953

RESUMO

Previously, we published an article providing an overview of the Rosetta suite of biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et al. (2010) Biochemistry 49, 2987-2998]. The overwhelming positive response to this publication we received motivates us to here share the next iteration of these tutorials that feature de novo folding, comparative modeling, loop construction, protein docking, small molecule docking, and protein design. This updated and expanded set of tutorials is needed, as since 2010 Rosetta has been fully redesigned into an object-oriented protein modeling program Rosetta3. Notable improvements include a substantially improved energy function, an XML-like language termed "RosettaScripts" for flexibly specifying modeling task, new analysis tools, the addition of the TopologyBroker to control conformational sampling, and support for multiple templates in comparative modeling. Rosetta's ability to model systems with symmetric proteins, membrane proteins, noncanonical amino acids, and RNA has also been greatly expanded and improved.


Assuntos
Modelos Moleculares , Software , Algoritmos , Biologia Computacional , Internet , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Proteínas/química , RNA/química , Interface Usuário-Computador
20.
ACS Chem Neurosci ; 7(7): 1013-23, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27184474

RESUMO

The inward rectifier potassium (Kir) channel Kir7.1 (KCNJ13) has recently emerged as a key regulator of melanocortin signaling in the brain, electrolyte homeostasis in the eye, and uterine muscle contractility during pregnancy. The pharmacological tools available for exploring the physiology and therapeutic potential of Kir7.1 have been limited to relatively weak and nonselective small-molecule inhibitors. Here, we report the discovery in a fluorescence-based high-throughput screen of a novel Kir7.1 channel inhibitor, VU714. Site-directed mutagenesis of pore-lining amino acid residues identified glutamate 149 and alanine 150 as essential determinants of VU714 activity. Lead optimization with medicinal chemistry generated ML418, which exhibits sub-micromolar activity (IC50 = 310 nM) and superior selectivity over other Kir channels (at least 17-fold selective over Kir1.1, Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and Kir4.1) except for Kir6.2/SUR1 (equally potent). Evaluation in the EuroFins Lead Profiling panel of 64 GPCRs, ion-channels, and transporters for off-target activity of ML418 revealed a relatively clean ancillary pharmacology. While ML418 exhibited low CLHEP in human microsomes which could be modulated with lipophilicity adjustments, it showed high CLHEP in rat microsomes regardless of lipophilicity. A subsequent in vivo PK study of ML418 by intraperitoneal (IP) administration (30 mg/kg dosage) revealed a suitable PK profile (Cmax = 0.20 µM and Tmax = 3 h) and favorable CNS distribution (mouse brain/plasma Kp of 10.9 to support in vivo studies. ML418, which represents the current state-of-the-art in Kir7.1 inhibitors, should be useful for exploring the physiology of Kir7.1 in vitro and in vivo.


Assuntos
Modelos Moleculares , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutagênese Sítio-Dirigida , Mutação/genética , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...